MediAI Pro - Healthcare Analytics

AI-powered real-time data analytics for predictive medicine, operational optimization, and patient insights

Data Upload Requirements

Before analyzing your healthcare data, please ensure it meets the following standards:

Supported Formats

CSV, JSON, Excel (XLSX), HL7 FHIR, DICOM metadata

Data Structure

Structured data with clear column headers. Each row should represent a unique patient/encounter.

Minimum Fields

Patient ID, Age, Gender, Diagnosis codes, Admission/Discharge dates

File Size

Up to 100MB for real-time analysis. Larger datasets may require batch processing.

Data Privacy

All data is encrypted in transit and at rest. PHI should be de-identified when possible.

Recommended Fields

Lab results, medications, vitals, prior admissions, social determinants

Patient Readmission Risk

๐Ÿ“Š
12.4%
Predicted 30-day readmission rate
โ†“ 2.1% from last month

Chronic Disease Patients

โค๏ธ
1,248
Patients with chronic conditions
โ†‘ 5.3% from last quarter

Preventive Care Adherence

๐Ÿฉบ
78%
Patients following preventive care plans
โ†‘ 8.2% from last year

Operational Efficiency

โš™๏ธ
92%
Resource utilization rate
โ†’ Stable from last month

Data Analysis Center

Python
R
SQL
TensorFlow.js
Pandas
Scikit-learn
StatsModels
import pandas as pd
import matplotlib.pyplot as plt

# Load healthcare data with proper encoding
df = pd.read_csv('patient_data.csv', encoding='utf-8')

# Handle missing data
df.fillna({
    'age': df['age'].median(),
    'blood_pressure': df['blood_pressure'].mean(),
    'cholesterol': df['cholesterol'].median()
}, inplace=True)

# Basic statistics with percentiles
print(df.describe(percentiles=[.25, .5, .75, .9]))

# Visualize readmission risk distribution
plt.figure(figsize=(10, 6))
plt.hist(df['readmission_risk'], bins=20, color='skyblue', edgecolor='black')
plt.title('Patient Readmission Risk Distribution', fontsize=14)
plt.xlabel('Risk Score', fontsize=12)
plt.ylabel('Count', fontsize=12)
plt.grid(axis='y', alpha=0.3)
plt.show()
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import (accuracy_score, roc_auc_score, 
                            classification_report, confusion_matrix)
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline

# Prepare data with feature selection
features = ['age', 'bmi', 'blood_pressure', 'cholesterol', 
            'prior_admissions', 'medication_count']
target = 'readmission_flag'

X = df[features]
y = df[target]

# Split into train/test with stratification
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y)

# Create pipeline with scaling and model
model = make_pipeline(
    StandardScaler(),
    RandomForestClassifier(n_estimators=200, 
                          max_depth=5,
                          class_weight='balanced',
                          random_state=42)
)

# Train model
model.fit(X_train, y_train)

# Evaluate model
y_pred = model.predict(X_test)
y_proba = model.predict_proba(X_test)[:, 1]

print(f"Accuracy: {accuracy_score(y_test, y_pred):.3f}")
print(f"AUC Score: {roc_auc_score(y_test, y_proba):.3f}")
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import variance_inflation_factor

# Prepare data for logistic regression
X = df[['age', 'bmi', 'blood_pressure', 'cholesterol', 
        'prior_admissions', 'medication_count']]
X = sm.add_constant(X)  # Add intercept
y = df['readmission_flag']

# Check for multicollinearity
vif_data = pd.DataFrame()
vif_data["feature"] = X.columns
vif_data["VIF"] = [variance_inflation_factor(X.values, i) 
                   for i in range(len(X.columns))]
print("VIF Analysis:\n", vif_data)

# Fit logistic regression model
model = sm.Logit(y, X).fit(disp=0)

# Print summary with odds ratios
print(model.summary())
print("\nOdds Ratios:")
print(np.exp(model.params))
# Load healthcare data with proper NA handling
df <- read.csv("patient_data.csv", na.strings = c("NA", "", " "))

# Install and load necessary packages
if (!require("tidyverse")) install.packages("tidyverse")
if (!require("caret")) install.packages("caret")
library(tidyverse)
library(caret)

# Data cleaning and feature engineering
df_clean <- df %>%
  mutate(
    age = ifelse(is.na(age), median(age, na.rm = TRUE), age),
    bmi = ifelse(is.na(bmi), median(bmi, na.rm = TRUE), bmi),
    risk_category = cut(readmission_risk,
                       breaks = c(0, 0.1, 0.3, 1),
                       labels = c("Low", "Medium", "High"))
  )

# Descriptive statistics
summary(df_clean)
psych::describe(df_clean %>% select(age, bmi, blood_pressure, cholesterol))

# Visualize readmission risk with ggplot2
ggplot(df_clean, aes(x = readmission_risk, fill = risk_category)) +
  geom_histogram(bins = 30, alpha = 0.8, color = "white") +
  scale_fill_manual(values = c("#28a745", "#ffc107", "#dc3545")) +
  labs(title = "Patient Readmission Risk Distribution",
       x = "Risk Score", y = "Count") +
  theme_minimal()

# Predictive modeling with caret
set.seed(42)
train_index <- createDataPartition(df_clean$readmission_flag, p = 0.8, list = FALSE)
train <- df_clean[train_index, ]
test <- df_clean[-train_index, ]

# Train random forest with cross-validation
ctrl <- trainControl(method = "cv", number = 5, 
                    classProbs = TRUE, summaryFunction = twoClassSummary)

model <- train(readmission_flag ~ age + bmi + blood_pressure + cholesterol + 
               prior_admissions + medication_count,
               data = train,
               method = "rf",
               trControl = ctrl,
               metric = "ROC",
               tuneLength = 3)

# Evaluate model
predictions <- predict(model, newdata = test)
confusionMatrix(predictions, test$readmission_flag)
-- Create optimized tables with proper indexing
CREATE TABLE patients (
    patient_id VARCHAR(36) PRIMARY KEY,
    first_name VARCHAR(50),
    last_name VARCHAR(50),
    age INT,
    gender VARCHAR(10),
    admission_date TIMESTAMP,
    discharge_date TIMESTAMP,
    readmission_risk DECIMAL(5,4),
    INDEX idx_readmission_risk (readmission_risk),
    INDEX idx_discharge_date (discharge_date)
);

-- Query patient readmission rates with window functions
WITH readmission_stats AS (
    SELECT 
        department,
        COUNT(*) AS total_patients,
        SUM(readmission_flag) AS readmissions,
        ROUND(AVG(readmission_risk), 3) AS avg_risk,
        ROUND(SUM(readmission_flag) * 100.0 / COUNT(*), 2) AS readmission_rate,
        RANK() OVER (ORDER BY SUM(readmission_flag) * 100.0 / COUNT(*) DESC) AS rank
    FROM 
        patients
    WHERE 
        discharge_date BETWEEN DATE_SUB(NOW(), INTERVAL 1 YEAR) AND NOW()
    GROUP BY 
        department
)
SELECT 
    department,
    total_patients,
    readmissions,
    avg_risk,
    readmission_rate
FROM 
    readmission_stats
ORDER BY 
    readmission_rate DESC
LIMIT 10;

-- Find high-risk patients with complex conditions
SELECT 
    p.patient_id,
    CONCAT(p.first_name, ' ', p.last_name) AS patient_name,
    p.age,
    p.readmission_risk,
    COUNT(d.diagnosis_id) AS diagnosis_count,
    GROUP_CONCAT(d.diagnosis_code SEPARATOR ', ') AS diagnoses
FROM 
    patients p
JOIN 
    patient_diagnoses d ON p.patient_id = d.patient_id
WHERE 
    p.readmission_risk > 0.3
    AND p.discharge_date BETWEEN DATE_SUB(NOW(), INTERVAL 30 DAY) AND NOW()
GROUP BY 
    p.patient_id, p.first_name, p.last_name, p.age, p.readmission_risk
HAVING 
    COUNT(d.diagnosis_id) > 2
ORDER BY 
    p.readmission_risk DESC
LIMIT 20;
// Load and preprocess data with tensorflow.js
async function loadAndPreprocessData() {
    // Load CSV data
    const dataUrl = 'patient_data.csv';
    const rawData = tf.data.csv(dataUrl, {
        columnConfigs: {
            readmission_flag: {
                isLabel: true
            }
        }
    });
    
    // Define feature columns
    const featureColumns = [
        'age', 'bmi', 'blood_pressure', 'cholesterol', 
        'prior_admissions', 'medication_count'
    ];
    
    // Process features
    const numFeatures = featureColumns.length;
    const processedData = rawData.map(({xs, ys}) => {
        const features = featureColumns.map(col => xs[col]);
        return {
            xs: tf.tensor1d(features),
            ys: tf.oneHot(tf.tensor1d([ys.readmission_flag], 'int32'), 2)
        };
    }).batch(32);
    
    return processedData;
}

// Define neural network architecture
function createModel() {
    const model = tf.sequential();
    
    // Input layer
    model.add(tf.layers.dense({
        units: 64,
        activation: 'relu',
        inputShape: [6]  // Number of features
    }));
    
    // Hidden layers with dropout for regularization
    model.add(tf.layers.dropout({rate: 0.2}));
    model.add(tf.layers.dense({
        units: 32,
        activation: 'relu',
        kernelRegularizer: tf.regularizers.l2({l2: 0.01}))
    }));
    
    // Output layer
    model.add(tf.layers.dense({
        units: 2,
        activation: 'softmax'
    }));
    
    // Compile model with custom metrics
    model.compile({
        optimizer: tf.train.adam(0.001),
        loss: 'categoricalCrossentropy',
        metrics: ['accuracy', tf.metrics.auc()]
    }));
    
    return model;
}

// Train and evaluate model
async function trainModel() {
    const data = await loadAndPreprocessData();
    const model = createModel();
    
    // Split data (80% train, 20% test)
    const trainSize = Math.floor(0.8 * 1000); // Assuming 1000 samples
    const trainData = data.take(trainSize);
    const testData = data.skip(trainSize);
    
    // Train model with early stopping
    await model.fitDataset(trainData, {
        epochs: 50,
        validationData: testData,
        callbacks: {
            onEpochEnd: (epoch, logs) => {
                console.log(`Epoch ${epoch}: loss = ${logs.loss.toFixed(4)}, 
                            acc = ${logs.acc.toFixed(4)}, 
                            val_loss = ${logs.val_loss.toFixed(4)}`);
            }
        }
    });
    
    // Make prediction on new data
    const samplePatient = tf.tensor2d([[65, 28.5, 140, 200, 3, 5]]);
    const prediction = model.predict(samplePatient);
    const risk = prediction.dataSync()[1] * 100;
    console.log(`Predicted readmission risk: ${risk.toFixed(1)}%`);
}

Report Generation

๐Ÿ“„
Executive Summary
High-level overview with key metrics and trends
๐Ÿฉบ
Clinical Analysis
Detailed clinical insights and patient cohorts
๐Ÿ“Š
Operational Report
Resource utilization and efficiency metrics
๐Ÿ”ง
Custom Report
Build your own report with selected parameters
Patient Readmission Risk Analysis

Executive Summary

The current 30-day readmission rate is 12.4%, showing a 2.1% improvement from last month. Our predictive models identify 42 high-risk patients (risk >30%) who account for 68% of expected readmissions. The cardiology department has the highest readmission rate at 18.7%.

Key Findings

  • Patients with multiple chronic conditions have 3.2x higher readmission risk
  • Medication non-adherence contributes to 42% of preventable readmissions
  • Weekend discharges show 28% higher readmission rates
  • Patients without follow-up within 7 days have 2.5x higher risk

Predictive Insights

The random forest model (AUC=0.87) identifies age, HbA1c levels, and prior admissions as top predictors. Patients scoring above 0.3 on our risk scale should be prioritized for care transition programs.

Recommendations

  1. Implement real-time risk alerts for discharging physicians
  2. Expand post-discharge follow-up calls for high-risk patients
  3. Develop targeted education for patients with multiple medications
  4. Optimize weekend discharge protocols with enhanced support

Detailed Risk Stratification

Risk distribution across patient population showing opportunities for targeted interventions.